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Personal Background
• Undergrad. Research Assistant, 1999: Furman

• NSF-REU Watershed Research with John Wheeler 

• Undergrad. Research Assistant, 2000, 2001: LANL
• Furman Research Fellowship, 2000 with Tony Arrington

• BS, BS, 2002: Furman University
• Chemistry, ACS Certificates in Chemistry and Environmental Chemistry
• Biology, field ecology

• PostBaccalaureate Research
Assistant, 2002-2003: LANL
• C-PCS with Steve Buelow
• Time-of-Flight Mass 

Spectrometry of Laser-
driven fliers and a fluid 
dynamics model for
shock dynamics



Los Alamos National Laboratory

|   3

Personal Background
• PhD, 2008: University of Colorado at Boulder

• Analytical/Atmospheric Chemistry with Jose-Luis Jimenez
• NASA Earth System Science Graduate Student Fellowship
• Thesis: Quantitative Chemical Analysis of Urban and Source Organic 

Aerosols Using High-Resolution Aerosol Mass Spectrometry
• 50/50 Laboratory work and Field Campaign Measurements

Paul Scherrer Institute (PSI) 
Smog Chamber in Switzerland 
Secondary Organic Aerosol

CU-Boulder
Elemental Analysis Experiments 
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Why Study Atmospheric Aerosols?

Goal: Decrease uncertainties with direct measurements 
(size, composition, optical properties, and concentration)

Kolb, Nature 417:597-598, 2002



Los Alamos National Laboratory

|   5

 Greenhouse Gases –
Terrestrial Warming from CO2

 IPCC Aerosol Radiative 
Forcing

— First thought to be cooling and 
dominated by sulfates

— 2007: Largest uncertainty is still 
in the aerosols

— 2013 (AR5): BC absorption 
slightly increased (0.6 W m-2)

 Chemical Information
— Most Aerosols absorb while 

others cool the atmosphere
— Black Carbon: 2nd most 

important factor in global 
warming (behind CO2) & most 
uncertain (Bond et al., 2013)

— Sulfate and Organics – Cooling

Ambient Aerosols: Impacts on Climate

IPCC, AR5, 2013.
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20-90% of the particle mass from organics
Effects on climate, human health, etc…

Global sampling of particles < 1 micron diameter
Q. Zhang et al, Geophys. Res.Letters, 2007

Why Study Aerosol Chemistry?

• What are these OA?
– Thousands of species
– Extreme range of properties: MW, vapor pressure, functionality, polarity, 

hydrophilicity: 
• Hydrocarbons, aldehydes, ketones, peroxides, polyacids, oligomers, humic-like 

substances…
– No technique or combination can analyze all OA at the compound level

• Typical GC-MS: off-line, 6-24 hrs averages, 10% of the organic mass
– Traditionally poorly characterized

Color Code:
Organics
NH4
NO3
SO4
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High Resolution Time-of-Flight Aerosol Mass 
Spectrometer (HR-ToF-AMS)
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P.F. DeCarlo, J.R. Kimmel, A. Trimborn, M.J. Northway, J.T. Jayne, A.C. Aiken, M. Gonin, K. Fuhrer, T. Horvath, K. Docherty, D.R. 
Worsnop, and J.L. Jimenez. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Analytical Chemistry, 78: 
8281-8289, 2006.
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Elemental Analysis (EA) by EI-HRMS 
• EI MS Ion intensities α original mass

• Crable and Coggeshall, Anal Chem, 1958; Jimenez et al., JGR, 2003
• Identify all ions (HRMS)
• Determine Elemental Mass

• Atomic and Mass Ratios

Nonanal spectra (AMS)

O
H

C

Atomic Ratios:
O/C  H/C

Molec 0.11  2.0
Calc 0.06 1.8

A.C. Aiken et al. ES&T, 2008. 
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Advantages of Real-Time Direct Aerosol Measurements 
Elemental Analysis: Mexico City 

• Atomic H/C and N/C increase with primary emissions
• Atomic O/C increases later in the day with production of secondary species

A.C. Aiken et al. ES&T, 2008. 
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Black Carbon (a.k.a. “soot”) – Sources and Impacts
• Sources

• Incomplete combustion of fossil fuels, 
biofuels, biomass

• Ex: diesel/gas emissions from vehicles, 
coal-fired power plants, cook stoves, 
wildfires, trash burning, residential wood 
burning

• Small particles (PM2.5 <2.5 µm diameter)

• Climate Impacts
• Directly warms the atmosphere
• Indirectly can contribute to decreased 

precipitation and changes in cloud albedo
• Increase ice/snow melt by deposition
• Decreases air quality and visibility

• Human Health
• Asthma and respiratory illness
• Cancer and cardiovascular disease
• Decreased lifespan

Cook 
stoves

Coal-fired 
Power Plants

Las Conchas
Wildfire

Diesel
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• Important yet highly uncertain factor in global warming (Bond et al., 2013)

Questions: What is the morphology of BC?
Does it result in enhanced BC absorption?

• 4 Types of BC from SEM Images during Las Conchas
(China et al., Nature Communications, 2013)

• BC Morphology is important for modeling climate and BC absorption

Climatic Effects from Black Carbon and Coatings

Slide 11

Thickly Coated BC BC InclusionThin BC          Bare BC
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Urban
Forest

BC in a “Fresh” Wildfire Plume
Las Conchas Wildfire (June – August 2011) 

• 2nd Largest NM Fire (largest at the time)
– ~157K acres burned, started ~10 miles W of LANL
– ~10% of the particles contain BC

 “Fresh” BC concentrations > 10 µg m-3

• After Containment (during, est. 10x ~100 µg m-3)
• ~10x Urban Pollution (Liu, Aiken et al., Nature C., 2015)
• ~200x “clean” Forest (Ortega… Aiken et al., ACP, 2014)

 ~1-3 hours atmospheric aging USDS MODIS Fire Burn Scars
June July

Image from the International 
Space Station (ISS)

LANL
TA-3

LANL
TA-3
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Missoula USFS Fire Sciences Lab Stack Burns

• Stack Burns: Fuels are burned at the ground and the emissions are pulled 
up the stack by using a low pressure inside the stack

• Gas-phase and aerosol measurements are made from a platform at the top 
of the stack ~50 ft above the fire
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Biomass Burning Aging Studies – Bridging the Gap

Room
(Mixing and Dilution)

Ʈ (NOx/NOy)
Ambient 
Wildfires

Aging
Chambers

Measure: Black Carbon
Single Scatter Albedo
Modified Combustion Efficiency

Top DownBottom Up Parameterizations

Stack
(Flaming)

Whitewater 
Baldy

(9-20 hrs)
2012

Las Conchas
(1-3 hrs)

2011
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U.S. Department of Energy Atmospheric 
Radiation Measurement (ARM) Facility
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Layered Atlantic Smoke Interactions with Clouds (LASIC)
• Southern Africa and Biomass Burning (BB)

• Largest source of BB Emissions Globally
• Land Clearing Wood and Grassland Fires
• BB Season is from June to November 

• LASIC Measurements 
• Ascension Island in the Southern Atlantic Ocean
• June 2016 – Oct. 2017
• Two Southern African BB Seasons

P. Zuidema, BAMS, 2016
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ARM Mobile Facility (AMF1 with AOS and MAOS) at LASIC

• Aerosols and Trace Gases in the Aerosol Observing System 
(AOS) and Mobile AOS (MAOS)

– Surface: Particle number, size, optical properties, refractory Carbon (rC) 
content, non-refractory chemical composition, hygroscopicity and water 
uptake properties, Nitrogen Oxides, Combustion tracers (CO, SO2), 
Ozone, Volatile Organic Compounds

– Column: Sunphotometer

• Atmospheric Profiling
– Microwave, High Frequency, 
and 3-Channel Radiometers

• Clouds
– Lidar, Cloud Radars (K- and W-band),

Total Sky Imager, Ceilometer

• Radiometers

• Surface Meteorology

AOS

AMF1
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LASIC Biomass Burning Organic Aerosol Comparison 
to Laboratory and Near-field Biomass Burning Data

• X: Single Scatter Albedo (SSA) 
‒ Values from 0 - 1
‒ Bare refractory Carbon ~ 0.4
‒ Scattering Organics ~ 1.0 

(non-absorbing)

• Y: Absorption Angstrom 
Exponent (AAE)
‒ Refractory Carbon ~ 1.0 

(λ independent)
‒ Absorbing organics > 1

(higher in the UV) 

• Ambient US Forest Fires
‒ SSA ~ 0.85 – 0.95
‒ AAE ~ 1 – 4

• LASIC
‒ Lower SSA (0.81 ± 0.03) and 

AAE (1.04 ± 0.10)
‒ Refractory Carbon dominates, no 

evidence for organic absorption S. Liu, A.C. Aiken, et al., GRL,2014 
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• Non-Refractory Submicron Aerosol Mass
– Dominated by Organics

• Total (non-refractory +refractory Carbon)
August 8/7 – 17 Plume
2.2 µg m-3 3.9 µg m-3

Org/rC = 3.0 Org/rC = 2.4

• Preliminary (PMF) Analysis
• Most of the Organics are Aged/Oxidized
• Aged Biomass Burning - S. Zhou et al., 

ACPD 2016
• Bulk Chemical Information

– Refractory Carbon and Organics dominate

LASIC Biomass Burning Plume Chemical Composition
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Organics = 67.0% 
Sulfate = 8.59%
Nitrate = 1.37%
Chloride = 0.78%
Ammonium = -0.01%
rC = 22.3%

Organics = 63.2% 
Sulfate = 8.39%
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Ammonium = 0.20%
rC = 26.0%
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LASIC Biomass Burning Organic Aerosol
Comparison to 2017 US Wildfire Data

• LASIC Elemental Analysis Approximation
- Aiken et al., ES&T, 2008

• O/C = 0.98 ± 0.12 
• OM/OC = 2.41 ± 0.16
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Conclusions
• Absorbing Aerosols directly warm the atmosphere

• Black carbon – strongest absorber, most well known, but varies due to internal mixing and aging in 
the atmosphere

• Brown carbon, absorbing dusts – most uncertain
• Aged biomass burning observed at Ascension Island from Southern Africa (dominated by soot)

• High variability in direct radiative forcing of Absorbing Aerosols 
• Large differences – fuels, atmospheric aging, etc.
• BC absorption enhancements due to coatings and direct absorption from Brown Carbon observed in 

the Winter in the UK

• Aerosol Mass Spectrometry
• Real-time in situ measurement of soot and organics, including chemical changes 

(oxygen-content) in real time
• Local wildfires sampled
• Climate and Forensic applications

• Need for ambient aerosol in situ measurements 
• Sample regional and source-specific differences
• Closure studies
• Capture dynamic processes
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